129 research outputs found

    Joint Task Offloading and Resource Allocation in Aerial-Terrestrial UAV Networks with Edge and Fog Computing for Post-Disaster Rescue

    Full text link
    Unmanned aerial vehicles (UAVs) play an increasingly important role in assisting fast-response post-disaster rescue due to their fast deployment, flexible mobility, and low cost. However, UAVs face the challenges of limited battery capacity and computing resources, which could shorten the expected flight endurance of UAVs and increase the rescue response delay during performing mission-critical tasks. To address this challenge, we first present a three-layer post-disaster rescue computing architecture by leveraging the aerial-terrestrial edge capabilities of mobile edge computing (MEC) and vehicle fog computing (VFC), which consists of a vehicle fog layer, a UAV client layer, and a UAV edge layer. Moreover, we formulate a joint task offloading and resource allocation optimization problem (JTRAOP) with the aim of maximizing the time-average system utility. Since the formulated JTRAOP is proved to be NP-hard, we propose an MEC-VFC-aided task offloading and resource allocation (MVTORA) approach, which consists of a game theoretic algorithm for task offloading decision, a convex optimization-based algorithm for MEC resource allocation, and an evolutionary computation-based hybrid algorithm for VFC resource allocation. Simulation results validate that the proposed approach can achieve superior system performance compared to the other benchmark schemes, especially under heavy system workloads.Comment: 18 pages, 6 figure

    Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing

    Get PDF
    Publisher Copyright: © 2022 Jing Cai et al.Organic aerosol (OA) is a major component of fine particulate matter (PM), affecting air quality, human health, and the climate. The absorptive and reflective behavior of OA components contributes to determining particle optical properties and thus their effects on the radiative budget of the troposphere. There is limited knowledge on the influence of the molecular composition of OA on particle optical properties in the polluted urban environment. In this study, we characterized the molecular composition of oxygenated OA collected on filter samples in the autumn of 2018 in Beijing, China, with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). Three haze episodes occurred during our sampling period with daily maximum concentrations of OA of 50, 30, and 55 μg m-3. We found that the signal intensities of dicarboxylic acids and sulfur-containing compounds increased during the two more intense haze episodes, while the relative contributions of wood-burning markers and other aromatic compounds were enhanced during the cleaner periods. We further assessed the optical properties of oxygenated OA components by combining detailed chemical composition measurements with collocated particle light absorption measurements. We show that light absorption enhancement (Eabs) of black carbon (BC) was mostly related to more oxygenated OA (e.g., dicarboxylic acids), likely formed in aqueous-phase reactions during the intense haze periods with higher relative humidity, and speculate that they might contribute to lensing effects. Aromatics and nitro-aromatics (e.g., nitrocatechol and its derivatives) were mostly related to a high light absorption coefficient (babs) consistent with light-absorbing (brown) carbon (BrC). Our results provide information on oxygenated OA components at the molecular level associated with BrC and BC particle light absorption and can serve as a basis for further studies on the effects of anthropogenic OA on radiative forcing in the urban environment.Peer reviewe

    The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides

    Get PDF
    Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants.This work was supported by the Youth Innovation Promotion Association of CAS (2015281), project funded by the China Postdoctoral Science Foundation (2016M601166), Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-025), and Grape Breeding Project of Ningxia (NXNYYZ201502)

    The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides

    Get PDF
    Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants

    Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China

    Get PDF
    BACKGROUND: Continuous exposure to various environmental carcinogens and genetic polymorphisms of xenobiotic-metabolizing enzymes (XME) are associated with many types of human cancers, including esophageal squamous cell carcinoma (ESCC). Huaian, China, is one of the endemic regions of ESCC, but fewer studies have been done in characterizing the risk factors of ESCC in this area. The aims of this study is to evaluate the etiological roles of demographic parameters, environmental and food-borne carcinogens exposure, and XME polymorphisms in formation of ESCC, and to investigate possible gene-gene and gene-environment interactions associated with ESCC in Huaian, China. METHODS: A population based case-control study was conducted in 107 ESCC newly diagnosed cases and 107 residency- age-, and sex-matched controls in 5 townships of Huaian. In addition to regular epidemiological and food frequency questionnaire analyses, genetic polymorphisms of phase I enzymes CYP1A1, CYP1B1, CYP2A6, and CYP2E1, and phase II enzymes GSTM1, GSTT1, GSTP1, and microsomal epoxide hydrolase (EPHX) were assessed from genomic DNA using PCR based techniques. RESULTS: Consuming acrid food, fatty meat, moldy food, salted and pickled vegetables, eating fast, introverted personality, passive smoking, a family history of cancer, esophageal lesion, and infection with Helicobacter pylori were significant risk factors for ESCC (P < 0.05). Regular clean up of food storage utensils, green tea consumption, and alcohol abstinence were protective factors for ESCC (P < 0.01). The frequency of the GSTT1 null genotype was higher in cases (59.4%) compared to controls (47.2%) with an odds ratio (OR) of 1.68 and 95% confidence interval (CI) from 0.96 to 2.97 (P = 0.07), especially in males (OR = 2.78; 95% CI = 1.22–6.25; P = 0.01). No associations were found between polymorphisms of CYP1A1, CYP1B1, CYP2A6, CYP2E1, GSTM1, GSTP1, and EPHX and ESCC (P > 0.05). CONCLUSION: Our results demonstrated that dietary and environmental exposures, some demographic parameters and genetic polymorphism of GSTT1 may play important roles in the development of ESCC in Huaian area, China

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore